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Abstract—In this paper, several general forms of linear time-
invariant (LTI) state-space models are explored. In particular,
a numerical robustness of the so-called pairwise Kalman filter
(PKF) is investigated. We propose stable singular value decompo-
sition (SVD) factorization-based algorithms for implementing the
PKF and LTI MIMO estimator, respectively, and explain their
practical applicability in econometrics discipline. More precisely,
the test for evolving efficiency is expressed in the LTI MIMO
form and the newly-derived SVD-based estimator is applied for
recovering the Russian market weak-form efficiency process in
the last 20 years.

Index Terms—Pairwise Markov model, pairwise Kalman filter,
singular value decomposition, test for evolving market efficiency

I. INTRODUCTION

In the past few years, hidden Markov models (HMMs)
have been generalized in various ways; e.g. see linear time-
invariant multiple-input, multiple-output systems (LTI MIMO)
examined in [1], [2], bilinear systems studied in [3] and
pairwise Markov models (PMMs) with the related linear
estimator named as the pairwise Kalman filter (PKF) and
discussed in [4]–[7]. We focus on linear Gaussian PMMs
and the closely related LTI MIMO class of models. It is
worth noting here that in the PMMs framework, the HMMs
processing is also available as explained in [8]. More precisely,
the PMMs imply that the pair consisting of the hidden and
observable processes, T = (X,Y ), is Markovian, in contrast
to the HMMs methodology where the unknown process X
is assumed to be Markov [9]. We stress that both the LTI
MIMO and linear PMMs generalize the classical state-space
model structure, for which the classical Kalman filter (KF)
has been derived. Thus, these model specifications allow an
optimal filtering method for estimating a hidden state process
similar to the classical KF. Consequently, the resulted KF-like
estimators possess numerical instability problems intrinsic to
the classical KF methodology [10].

The factored-form (square-root) algorithms are recognized
to be preferred implementations for treating a numerical
instability problem of the classical KF [11]. The key idea
of square-root (SR) algorithms is to ensure the symmetric
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form and positive semi-definiteness of error covariance matrix
P by decomposing it in the form P = SST and, next, re-
formulating the filter equations in terms of the resulted factors,
only [12, Chapter 7]. The square-root (SR) methodology
yields a wide variety of the KF implementation methods,
among which the most popular are the Cholesky and UD
factorization-based methods; see [13]–[15] and many others.
The most recent development in this realm is the most stable
SVD-based KF implementation proposed in [16].

Although considerable research has been devoted to the
factored-form KFs design, rather less attention has been paid to
derivation of robust PKF and LTI MIMO practical methods. So
far, investigations have been confined to the Cholesky-based
PKF algorithms in [6], [7] and LTI MIMO KF-like methods
in [1], [2]. The most recent development in this realm is the
new UD-based PKF strategy proposed in [17]. Despite the
newly revealed benefits of the SVD-based KF strategy, such
implementations do not exist neither for the PKF nor for the
LTI MIMO systems, yet. In this paper we are going to fill in
this gap by deriving the SVD-based KF-like estimators for
the examined models. Additionally, the considered systems
are shown to be better suited for some structural econometric
models than the classical state-space representation. More
precisely, the test for evolving efficiency proposed in [18]
is discussed. Under this methodology, the newly developed
SVD-based technique is applied to the Russia Trading System
Index (RTSI) for recovering the Russian market weak-form
efficiency process in the last 20 years.

II. STATE-SPACE REPRESENTATION: PMMS AND
LTI MIMO SYSTEMS

Consider the classical state-space model representation for
linear Gaussian HMMs

xk+1 = Fxk +Buk + wk, wk ∼ N (0,Θ), (1)
yk = Hxk + vk vk ∼ N (0, R) (2)

where F ∈ Rn×n, B ∈ Rn×d and H ∈ Rm×n are known at
each time instance tk. The vectors xk ∈ Rn, uk ∈ Rd and
yk ∈ Rm are unknown dynamic state, known deterministic
input and available measurement vector, respectively. Random
variables x0, wk and vk are assumed to be normally distributed
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and satisfy the following properties:

E{x0} = x̄0, E
{
(x0 − x̄0)(x0 − x̄0)

T
}
= Π0,

E{wk} = E{vk} = 0, E
{
wkx

T
0

}
= E

{
vkx

T
0

}
= 0,

E
{
wkv

T
k

}
= 0, E

{
wkw

T
j

}
= Θδkj ,

E
{
vkv

T
j

}
= Rδkj

where covariance matrices Θ ∈ Rn×n and R ∈ Rm×m are
known. The symbol δkj is the Kronecker delta function.

The classical KF applied for estimating the hidden dynamic
state process {xk}Nk=1 from the observed sequence {yk}Nk=1,
yields the minimum expected mean square error (MSE) esti-
mate, {x̂k|k}Nk=1, for linear Gaussian state-space models. The
quantity x̂k|k stands for state estimate at time instance tk,
given the available measurements {y1, . . . , yk}. The classical
KF recursion is given as follows [19, Theorem 9.2.1]:

Algorithm 1. KF (Conventional KF implementation)
INITIALIZATION: (k = 0) x̂0|0 = x̄0 and P0|0 = Π0.
TIME UPDATE: (k = 1, N ) � PRIORI ESTIMATION

1 x̂k|k−1 = Fx̂k−1|k−1 +Buk−1,
2 Pk|k−1 = FPk−1|k−1F

T +Θ.
MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

3 Re,k = HPk|k−1H
T +R,

4 Kk = Pk|k−1H
TR−1

e,k,
5 x̂k|k = x̂k|k−1 +Kkek where ek = yk −Hx̂k|k−1,
6 Pk|k = (I −KkH)Pk|k−1.

The important property of the KF for Gaussian state-space
models (1), (2) is that ek ∼ N (0, Re,k) where {ek} are the
discrete-time KF innovations. It enables to express the log
likelihood function (LF) in the following form [20], [21]:

lnL (θ|YN ) =

N∑
k=1

ln p(yk|Yk−1)

= −mN

2
ln 2π − 1

2

N∑
k=1

{
ln (detRe,k) + eTkR

−1
e,kek

}
. (3)

The LTI MIMO systems examined in this paper naturally
extend the classical state-space model (1), (2) as follows [1]:[

xk+1

yk

]
=

[
F B
H D

] [
xk

uk

]
+

[
wk

vk

]
, (4)[

wk

vk

]
∼ N

([
0
0

]
,

[
Θ S
ST R

])
(5)

where {xk}Nk=0 is the hidden process to be estimated, the
sequences {uk}Nk=0 and {yk}Nk=0 are the deterministic control
process and the observed output of the system, respectively.

It is not difficult to see that the LTI MIMO framework
allows the classical state-space model representation (1), (2)
when D = 0 and S = 0. The KF-like estimator for the LTI
MIMO state-space model (4), (5) can be easily derived at the
same manner as the classical KF equations. Here, we present
a summary of the LTI MIMO estimator in the form of pseudo-
code; see [1], [2], for more details.

Algorithm 2. LTI MIMO KF (conventional algorithm)
INITIALIZATION: (k = 0) x̂0|0 = x̄0 and P0|0 = Π0.

1 Set F = F − SR−1H , B = B − SR−1D,
2 Θ = Θ− SR−1ST .

TIME UPDATE: (k = 1, N ) � PRIORI ESTIMATION

3 x̂k|k−1 = Fx̂k−1|k−1 +Buk−1 + SR−1yk−1,

4 Pk|k−1 = FPk−1|k−1F
T
+Θ.

MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

5 Re,k = HPk|k−1H
T +R,

6 Kk = Pk|k−1H
TR−1

e,k,
7 ek = yk −Hx̂k|k−1 −Duk,
8 x̂k|k = x̂k|k−1 +Kkek,
9 Pk|k = (I −KkH)Pk|k−1.

Next, the linear PMMs discussed in [4] are closely related
to the LTI MIMO systems described above. In fact, if one
assumes that uk = yk−1 (i.e. instead of the control input
sequence, one has previously measured data) in the LTI MIMO
representation (4), (5), then the corresponding linear Gaussian
PMMs in the state-space form is given as follows [6]:[

xk+1

yk

]
=

[
F B
H D

] [
xk

yk−1

]
+

[
wk

vk

]
, (6)[

wk

vk

]
∼ N

([
0
0

]
,

[
Θ S
ST R

])
. (7)

Thus, linear Gaussian PMMs allow the classical state-space
model representation (1), (2) as well. Hence, in the PMMs
framework, a HMM-like processing is available, i.e. the PMMs
enlarge the HMMs approach; see the discussion in [8]. The
KF-like estimator can be derived for the PMMs as shown in [4,
Proposition 1]; see also summary in [6]. The resulted filtering
method is called the Pairwise Kalman Filter (PKF).

Algorithm 3. PKF (conventional implementation)
INITIALIZATION: (k = 0) x̂0|0 = x̄0 and P0|0 = Π0.

1 Set F = F − SR−1H , B = B − SR−1D,
2 Θ = Θ− SR−1ST .

TIME UPDATE: (k = 0, N − 1) � PRIORI ESTIMATION

3 x̂k+1|k = Fx̂k|k +Byk−1 + SR−1yk,

4 Pk+1|k = FPk|kF
T
+Θ.

MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

5 Re,k+1 = HPk+1|kH
T +R,

6 Kk+1 = Pk+1|kH
TR−1

e,k+1,
7 ek+1 = yk+1 −Hx̂k+1|k −Dyk,
8 x̂k+1|k+1 = x̂k+1|k +Kk+1ek+1,
9 Pk+1|k+1 = (I −Kk+1H)Pk+1|k.

Finally, we would like to stress that the PMMs and LTI
MIMO systems examined in this paper imply an array form of
their state-space representation. This convenient representation
makes them preferable for practical use, because it keeps
propagation equations explicit (i.e. it does not require time-
consuming simulations) and, hence, more suitable for parallel
computations as discussed in [15].
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III. MAIN RESULT: THE SVD-BASED FILTERING

Definition 1 (see Theorem 1.1.6 in [22]). Every matrix A ∈
Cm×n of rank r can be written as follows:

A = WΣV ∗, Σ =

[
S 0
0 0

]
∈ Cm×n, S = diag{σ1, . . . , σr}

where W ∈ Cm×m, V ∈ Cn×n are unitary matrices, V ∗ is the
conjugate transpose of V , and S ∈ Rr×r is a real nonnegative
diagonal matrix. Here σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are called the
singular values of A. (Note that if r = n and/or r = m, some
of the zero submatrices in Σ are empty.)

In the KF community, the SVD factorization-based im-
plementations have been recently designed in [16]. They
were shown to outperform the conventional KF as well as
numerically stable Cholesky- and UD-based KF methods for
estimation accuracy and robustness (with respect to roundoff
errors). Motivated by these recent findings, we develop the
SVD-based LTI MIMO estimator and PKF algorithm. To the
best of authors’ knowledge, such methods have never been
designed before.

First, we stress that each iterate of SVD-based algorithms
has the form of A = WΣVT where A ∈ R(k+s)×s is given
pre-array and the resulted post-array SVD factors are defined
as follows: W ∈ R(k+s)×(k+s), Σ ∈ R(k+s)×s and V ∈ Rs×s.
For the initial value of matrix Π0 the SVD factorization yields
Π0 = QΠ0DΠ0Q

T
Π0

where QΠ0 and DΠ0 are an orthogonal
and a diagonal matrices, respectively. The matrix DΠ0 contains
the singular values of Π0. Next, the filter equations are re-
formulated in terms of the SVD factors QPk|k and D

1/2
Pk|k

instead of processing the entire matrix Pk|k. Thus, the resulted
SVD-based LTI MIMO KF-like algorithm is given as follows:

Algorithm 4. SVD LTI MIMO KF (SVD-based algorithm)
INITIALIZATION: (k = 0)

1 Apply SVD to Π0 = QΠ0DΠ0Q
T
Π0

.
2 Set x̂0|0 = x̄0 and QP0|0 = QΠ0 , D1/2

P0|0
= D

1/2
Π0

.
3 Set F = F − SR−1H , B = B − SR−1D,
4 Θ = Θ− SR−1ST .
5 Apply SVD to Θ = QΘDΘQ

T
Θ

and R = QRDRQ
T
R.

TIME UPDATE: (k = 1, N ) � PRIORI ESTIMATION

6 x̂k|k−1 = Fx̂k−1|k−1 +Buk−1 + SR−1yk−1,
7 Assemble the pre-array and apply SVD as follows:[

D
1/2
Pk−1|k−1

QT
Pk−1|k−1

F
T

D
1/2

Θ
QT

Θ

]
︸ ︷︷ ︸

Pre−array

=V

[
D

1/2
Pk|k−1

0

]
QT

Pk|k−1︸ ︷︷ ︸
Post−array SVD factors

,

8 Read-off from the post-arrays: QPk|k−1
, D1/2

Pk|k−1
.

MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

9 Assemble the pre-array and apply SVD as follows:[
D

1/2
R QT

R

D
1/2
Pk|k−1

QT
Pk|k−1

HT

]
︸ ︷︷ ︸

Pre−array

= W

[
D

1/2
Re,k

0

]
QT

Re,k︸ ︷︷ ︸
Post−array SVD factors

,

10 Read-off from the post-arrays: QRe,k
and D

1/2
Re,k

,

11 K̄k = (QPk|k−1
DPk|k−1

QT
Pk|k−1

)HTQRe,k
,

12 ek = yk −Hx̂k|k−1 −Duk, ēk = QT
Re,k

ek,
13 x̂k|k = x̂k|k−1 + K̄kD

−1
Re,k

ēk,
14 Assemble the pre-array and apply SVD as follows:[

D
1/2
Pk|k−1

QT
Pk|k−1

AT

D
1/2
R QT

RK
T
k

]
︸ ︷︷ ︸

Pre−array

= Q

[
D

1/2
Pk|k

0

]
QT

Pk|k︸ ︷︷ ︸
Post−array SVD factors

where A = (I −KkH) and Kk = K̄kD
−1
Re,k

QT
Re,k

,

15 Read-off from the post-arrays: QPk|k and D
1/2
Pk|k

.

As can be seen, instead of conventional LTI MIMO re-
cursion (Algorithm 2) for Pk|k, Algorithm 4 propagates the
SVD factors of this matrix, i.e. the quantities {QPk|k , D

1/2
Pk|k

}.
This strategy improves the estimation quality and numerical
robustness when the error covariance matrix is ill-conditioned;
see numerical results in [16].

To justify the method in Algorithm 4, one should take into
account that A = WΣVT , where W and V are orthogonal
matrices, and hence ATA = (VΣWT )(WΣVT ) = VΣ2VT

for each filtering pre-array to be factorized. Thus, by compar-
ing both sides of the obtained matrix equalities in Algorithm 4,
the algebraic equivalence between the new SVD-based equa-
tions (Algorithm 4) and the conventional LTI MIMO KF-like
formulas (Algorithm 2) is proved. More precisely, from line 7
of Algorithm 4, we get

Pk|k−1 = QPk|k−1
DPk|k−1

QT
Pk|k−1

= FQPk−1|k−1
DPk−1|k−1

QT
Pk−1|k−1

F
T

+QΘDΘQ
T
Θ
= FPk−1|k−1F

T
+Θ,

which is exactly formula in line 4 of Algorithm 2.
Next, in line 9 of Algorithm 4 we have

Re,k = QRe,k
DRe,k

QT
Re,k

= QRDRQ
T
R +HQPk|k−1

DPk|k−1
QT

Pk|k−1
HT

= R+HPk|k−1H
T ,

i.e. formula in line 9 of Algorithm 4 implies equation Re,k =
HPk|k−1H

T +R in line 5 of Algorithm 2.
Expression in line 14 of Algorithm 4 for calculating the

feedback gain Kk and its normalized variant K̄k in line 11
is derived by taking into account that the matrix Re,k is the
SVD factorized. Indeed,

Kk = Pk|k−1H
T
(
QRe,k

DRe,k
QT

Re,k

)−1

= Pk|k−1H
TQRe,k

D−1
Re,k

QT
Re,k

= K̄kD
−1
Re,k

QT
Re,k

where the following notation is introduced for the normalized
feedback gain: K̄k = Pk|k−1H

TQRe,k
.

Furthermore, from the SVD factorization in line 14 of
Algorithm 4, we obtain

Pk|k = QPk|kDPk|kQ
T
Pk|k

= (I −KkH)QPk|k−1
DPk|k−1

QT
Pk|k−1

(I −KkH)
T

+KkQRDRQ
T
RK

T
k ,
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i.e. Pk|k = (I −KkH)Pk|k−1 (I −KkH)
T

+ KkRKT
k ,

which is equivalent to equation in line 9 of Algorithm 2 that
is Pk|k = (I −KkH)Pk|k−1; see the proof in [23, p. 128].

Finally, equation in line 13 of Algorithm 4 for computing
a posteriori state estimate is derived as follows:

x̂k|k = x̂k|k−1 +Kkek = x̂k|k−1 + K̄kD
−1
Re,k

QT
Re,k

ek

= x̂k|k−1 + K̄kD
−1
Re,k

ēk where ēk = QT
Re,k

ek.

This concludes the proof. Thus, the new SVD-based im-
plementation (Algorithm 4) is shown to be algebraically
equivalent to the conventional LTI MIMO KF-like method
(Algorithm 2).

Similarly, we derive the SVD-based PKF implementation.

Algorithm 5. SVD-PKF (SVD-based algorithm)
INITIALIZATION: (k = 0)

1 Apply SVD to Π0 = QΠ0DΠ0Q
T
Π0

.
2 Set x̂0|0 = x̄0 and QP0|0 = QΠ0 , D1/2

P0|0
= D

1/2
Π0

.
3 Set F = F − SR−1H , B = B − SR−1D,
4 Θ = Θ− SR−1ST .
5 Apply SVD to Θ = QΘDΘQ

T
Θ

and R = QRDRQ
T
R.

TIME UPDATE: (k = 0, N − 1) � PRIORI ESTIMATION

6 x̂k+1|k = Fx̂k|k +Byk−1 + SR−1yk,
7 Assemble the pre-array and apply SVD as follows:[

D
1/2
Pk|k

QT
Pk|k

F
T

D
1/2

Θ
QT

Θ

]
︸ ︷︷ ︸

Pre−array

= W

[
D

1/2
Pk+1|k

0

]
QT

Pk+1|k︸ ︷︷ ︸
Post−array SVD factors

,

8 Read-off from the post-arrays: QPk+1|k , D1/2
Pk+1|k

.
MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

9 Assemble the pre-array and apply SVD as follows:[
D

1/2
R QT

R

D
1/2
Pk+1|k

QT
Pk+1|k

HT

]
︸ ︷︷ ︸

Pre−array

=V

[
D

1/2
Re,k+1

0

]
QT

Re,k+1︸ ︷︷ ︸
Post−array SVD factors

,

10 Read-off from the post-arrays: QRe,k+1
, D1/2

Re,k+1
,

11 K̄k+1 = (QPk+1|kDPk+1|kQ
T
Pk+1|k

)HTQRe,k+1
,

12 ek+1 = yk+1 −Hx̂k+1|k −Dyk,
13 ēk+1 = QT

Re,k+1
ek+1,

14 x̂k+1|k+1 = x̂k+1|k + K̄k+1D
−1
Re,k+1

ēk+1,
15 Assemble the pre-array and apply SVD as follows:[

D
1/2
Pk+1|k

QT
Pk+1|k

AT

D
1/2
R QT

RK
T
k+1

]
︸ ︷︷ ︸

Pre−array

= Q

[
D

1/2
Pk+1|k+1

0

]
QT

Pk+1|k+1︸ ︷︷ ︸
Post−array SVD factors

where A = (I −Kk+1H)
and Kk+1 = K̄k+1D

−1
Re,k+1

QT
Re,k+1

,

16 Read-off QPk+1|k+1
and D

1/2
Pk+1|k+1

.

The algebraic equivalence between the new SVD-based PKF
(Algorithm 5) and the conventional PKF (Algorithm 3) can be
proved at the same manner as shown above for the LTI MIMO
KF-like estimator (Algorithms 2 and 4).

Finally, the log LF formula (3) can be expressed in terms

of the SVD factors of Re,k as follows [16]:

− lnL (θ|YN ) = c0 +
1

2

N∑
k=1

{
ln
(
detDRe,k

)
+ ēTkD

−1
Re,k

ēk

}
where c0 is a constant term.

IV. NUMERICAL EXPERIMENTS

First, we would like to check the theoretical derivations in
Section III on practical examples.

Example 1. Consider the pupil tracking problem where the
corresponding state-space model is given in linear Gaussian
PMM representation (6), (7) as follows [24]:

F =

 1.78 −0.01 0.38
−0.04 1.52 0.16
−0.01 0.01 0.66

, B=

−0.83 0.04 −0.33
0.04 −0.58 −0.15
−0.02 −0.01 0.34


where H = I3, Θ = R = I3, D = 03 and S = 03. The
matrices I3 and 03 denote the identity and zero matrices of
size 3× 3, respectively. Following [24], the initial values are
x̄0 = [180, 80, 20]T and Π0 = 0.1I3.

To recover hidden state process, {xk}, the PKF estimator
is applied. We examine the conventional PKF method (Algo-
rithm 3) and its robust factored-form implementations:

• SR-PKF (the Cholesky-based method) designed in [6];
• UD-PKF (the UD-based method) developed in [17];
• the newly proposed SVD-PKF (Algorithm 5);
The following set of numerical experiments is performed.

The system is simulated for k = 1, . . . , N with N = 50
discrete time points. Then, the “true” trajectory of the dynamic
state xexact

k and the related measurements yk are generated,
k = 1, . . . , N . Next, the examined filtering methods are
applied for solving the inverse problem: given the simulated
measurements, each filter under assessment yields the state
vector estimate x̂k|k, k = 1, . . . , N . For a fair compara-
tive study, the same filtering initial values, the same system
matrices and the same measurements are passed to all PKF
estimators listed above. The outlined experiment is repeated
for M = 1000 Monte-Carlo trials. All codes are written in
MATLAB. The root mean square error (RMSE) is computed
for each component of the state vector. Together with the
RMSEx, the accumulated CPU time (s) for each estimator
is reported in Table I.

Having analyzed the obtained numerical results presented in
Table I, we conclude that all estimators work with the same
accuracy. Hence, the theoretical derivations presented in Sec-
tion III and algebraic equivalence between four examined PKF
implementations are confirmed in practice. The accumulated
CPU time is higher for the factored-form implementations,
i.e. for the SR-PKF, UD-PKF and new SVD-PKF, compared
to the original PKF algorithm. This is in line with the
classical KF theoretical results. Comparing the factored-form
PKF implementations, we observe that their accumulated CPU
time consumptions are almost of the same value for this low
dimension problem.
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TABLE I
THE RMSE AND CPU TIME (S) IN EXAMPLE 1, M = 1000 RUNS.

Method RMSExi

x1 x2 x3 ∥RMSEx∥2 CPU
PKF 2.0932 0.9077 0.7386 2.3981 3.79

SR-PKF 2.0932 0.9077 0.7386 2.3981 6.31
UD-PKF 2.0932 0.9077 0.7386 2.3981 6.22
SVD-PKF 2.0932 0.9077 0.7386 2.3981 6.34

TABLE II
IMPACT OF ROUNDOFF ON PKF IMPLEMENTATIONS IN [17, EXAMPLE 2].

Method growing ill-conditioning δ → ϵroundoff

10−3 10−4 10−5 10−6 10−7 10−8

PKF 0.1878 0.2633 0.1978 0.2941 0.1902 NaN
SR-PKF 0.1878 0.2633 0.1978 0.2941 0.1902 0.1703
UD-PKF 0.1878 0.2633 0.1978 0.2941 0.1902 0.1702
SVD-PKF 0.1878 0.2633 0.1978 0.2941 0.1902 0.1702

Next, to explore the effect of roundoff errors on the ex-
amined PKF estimators, we consider the ill-conditioned test
problem proposed in [17, Example 2, p. 1623]. We repeat the
numerical experiments outlined above for M = 100 Monte
Carlo runs and various values of ill-conditioning parameter δ
such that δ → ϵroundoff , where ϵroundoff is the machine
precision limit. The source of numerical instability in this
example is in the residual covariance matrix inversion, because
Re,k tends to a singular matrix; see the third reason of ill-
conditioning of the classical KF discussed in [12, p. 288]. For
δ → ϵroundoff , we report ∥RMSEx∥2 in Table II.

Our analysis suggests that the factored-form PKF implemen-
tations, i.e. the SR-PKF, UD-PKF and new SVD-PKF, pro-
vide a better estimation quality and accuracy in ill-conditioned
situations, compared to the conventional PKF. In fact, the
conventional PKF algorithm degrades faster than any other
SR implementation under examination, and fails at δ = 10−8.
Among the factored-form PKF implementations, the previ-
ously published UD- and the newly-developed SVD-based
techniques slightly outperform the Cholesky-based counter-
part, i.e. they provide the best estimation quality when solving
ill-conditioned state estimation problem.

V. APPLICATION IN ECONOMETRICS

In this section the new robust SVD factorization-based
estimation strategy is applied to the Russia Trading System
Index (RTSI) for observing the weak-form market efficiency
from 1 October, 1997 to 1 October 2017, i.e. for the last 20
years. Following [25], a market is weak-form efficient when
there is no predictable profit opportunity based on the past
movement of asset prices (an efficient market is unpredictable).
One of the most common and simple tests for the presence of
weak-form efficiency is to see if the returns process follows
a random walk. This means that historical price information
cannot provide profit opportunities. A more sophisticated
tests are also exist in the econometrics literature. Here, we
follow the Bayesian methodology and utilize the test for
evolving efficiency (TEE) developed in [18]. This econometric
model integrates time-varying regression coefficients with the

underlying time-varying variance (volatility) process given
by GARCH-in-Mean(1,1) specification. For this complicated
model structure the classical state-space representation (1), (2)
might be restrictive, while the LTI MIMO and PMMs may
provide a better fit. The TEE is given as follows [18]:

yk =β0,k + β1,kyk−1 + δhk + εk, εk ∼ N (0, hk), (8)

hk =a0 + a1ε
2
k−1 + b1hk−1, (9)

βi,k =βi,k−1 + wi,k, i = 0, 1, wi,k ∼ N (0, σ2
i ) (10)

where a0 > 0, a1 ≥ 0, b1 ≥ 0 and a1 + b1 < 1 ensures
that the GARCH(1,1) process in equation (9) is stationary.
The process {yk}Nk=0 is the returns process and εk denotes
the error term (i.e. the return residuals). The process {hk}Nk=0

is the hidden volatility process, which needs to be estimated
from the available data {yk}Nk=0. The core result of the TEE
methodology is the time-varying slope coefficient β1,k. More
precisely, the evolution of β1,k reflects the time-varying change
in weak-form market efficiency. If β1,k equals to zero (within
its confidence interval), then the TEE yields the conclusion
that the market is weak-form efficient.

Motivated by [26], [27], the TEE estimation is done by
the state-space approach as discussed in [18]. In model (8) –
(10), the term εk is the return residual, i.e. εk = yk − β0,k −
β1,kyk−1−δhk; see equation (8). As discussed in [27], at time
instance tk the return residual εk−1 is known. Hence, the state-
space approach studied in [27] suggests to consider the value
εk−1 in equation (9) for computing hk as a known control
input. In summary, the TEE specification can be written in
convenient LTI MIMO form as follows:


hk+1

β0,k+1

β1,k+1

yk

 =



b1 0 0
0 1 0
0 0 1︸ ︷︷ ︸

F

a0 a1
0 0
0 0︸ ︷︷ ︸

B

δ 1 yk−1︸ ︷︷ ︸
H

0 0︸ ︷︷ ︸
D




hk

β0,k

β1,k

1
ε̂2k|k−1

+

[
wk

εk

]

where ε̂k|k−1 = yk− β̂0,k|k−1− β̂1,k|k−1yk−1−δĥk|k−1 is the
known return residual at time tk. The state and measurement
uncertainty processes {wk} and {εk} are independent Gaus-
sian zero-mean white-noise processes with covariance matrices
Θ = diag{0, σ2

0 , σ
2
1} and Rk = ĥk|k−1, respectively.

When the econometric model is casted into the state-space
form, the corresponding filtering method is used for estimating
the unknown dynamic state. For the examined model the SVD-
based LTI MIMO KF (Algorithm 4) is applied for estimating
xk = [hk, β0,k, β1,k] and for calculating the likelihood func-
tion to obtain the maximum likelihood estimate of unknown
system parameters θ = [a0, a1, b1, δ, σ

2
0 , σ

2
1 ].

Recall, the RTSI is a free-float capitalization-weighted in-
dex of 50 Russian stocks traded on the Moscow Exchange,
calculated in the US dollars. The index was introduced on
September 1, 1995. We use daily log-returns calculated on a
continuously compounded basis and expressed in percentages,
i.e. yk = 100(lnSk − lnSk−1), where {Sk} are the closing
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prices1 within the examined period. The estimated TEE model
is given as follows:

yk = β0,k + β1,kyk−1 − 0.0041hk + εk
hk = 0.0978 + 0.1204ε2k−1 + 0.8657hk−1

β0,k = β0,k−1 + w0,k where σ2
0 = 0.000001

β1,k = β1,k−1 + w1,k where σ2
1 = 0.000008

The time evolution of β1 coefficient reflects the changes
in weak-form market efficiency. The unknown state vector
xk = [hk, β0,k, β1,k] is estimated by the proposed SVD-based
filtering technique. The obtained results for β1,k coefficient
(with 95% confidence interval) and the daily log-returns are
illustrated by Fig. 1.
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Fig. 1. Daily log-returns and results of the TEE for the RTSI

Having analyzed the bottom graph on Fig. 1, we conclude
that the Russian market is inefficient at 95% confidence
level for almost entire time period to be explored. Since the
beginning of the examined period and until February 2016,
the 95% confidence interval for β1,k does not contain the
critical value of zero, implying that the market is weak-
form inefficient. However, it is readily seen that the market
gradually tends to weak-form efficiency throughout the time
period under examination. The 95% confidence interval may
indicate some degree of efficiency in the period from October
2012 to June 2014. At that period of time, the lower bound of
the 95% confidence interval touches the critical level of zero.
It is clear that the market becomes weak-form efficient only
since February 2016, when the estimated time-path of β1,k for
the RTSI is strongly within the 95% confidence interval.
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